

 Navigation

 	
 index

 	
 next |

 	Smile.jl 1.0 documentation

Smile — Structural Modelling, Inference, and Learning Engine

The Smile.jl package is a wrapper for the C++ SMILE librarydeveloped by the Decision Systems Laboratory at the University of Pittsburgh. Smile allows users to do structure modelling, inference, and learning for Bayesian Networks.

Contents:

	Available Types

	Installation
	Advanced

	QuickStart Guide

	Naive Bayes
	Parameters

	Examples

	Tree Augmented Naive Bayes
	Parameters

	Examples

	Algorithm

	Reference

	Bayesian Search
	Parameters

	Examples

	Algorithm

	Reference

	Greedy Thick Thinning
	Parameters

	Examples

	Algorithm

	Reference

	PC
	Parameters

	Examples

	Algorithm

	Reference

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Smile.jl 1.0 documentation

Available Types

Smile.jl represents SMILE objects as Julia types with void pointers to their C++ counterparts. Garbage collection is handled automatically through the use of a finalizer set in the type constructor.

The available types are:

All objects are constructed without parameters, with the exception of SysCoordinates, which requires a NodeDefinition.

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Smile.jl 1.0 documentation

Installation

The wrapper library for Smile comes pre-built and is installed automatically when Smile is added through the Julia package manager:

Pkg.add("Smile")

Advanced

SMILE is a C++ project for which headers and static libraries are freely distributed. It is recommended that users download a copy of the latest version of SMILE_ for their operating system.

– _SMILE: https://dslpitt.org/genie/

Software for the C++ wrapper is located in /src/wrapper/. If you installed this package through the Julia package manager it will be in ~/.julia/Smile/src/wrapper/.

Extract the downloaded files in the same directory as the wrapper code. Rename the extracted folder to “lib”. Copy libsmile.a and libsmilearn.a into the wrapper folder. The filestructure should now be:

	libsmile.a
	Smile core static library

	libsmilearn.a
	Smilearn static library

	smile_wrapper.cpp
	Cpp wrapper source file

	smile_wrapper.hpp
	Cpp wrapper header file

	smile_compile.sh
	Compilation bash script

	lib/
	Smile Cpp compiled source

Run the bash script:

$ bash -x ./smile_compile.sh

This will produce smile_wrapper.o and libsmilejl.so.1.0. All that is left to do is place it on your library search path and perform the linking.

Move the file and perform linking:

$ sudo mv libsmilejl.so.1.0 /usr/lib
$ sudo ln -sf /usr/lib/libsmilejl.so.1.0 /usr/lib/libsmilejl.so.1
$ sudo ln -sf /usr/lib/libsmilejl.so.1.0 /usr/lib/libsmilejl.so

Restart the terminal to ensure libsmilejl is found before using Smile.jl

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Smile.jl 1.0 documentation

QuickStart Guide

This tutorial will cover some basic steps in creating a Bayesian network. It closely mimics the first smile tutorial [https://dslpitt.org/genie/wiki/SMILE_Tutorial_1:_Creating_a_Bayesian_Network].

We start by declaring an instance of a network.

net = Network()

Now we are going to create a node called Success. The node will represent a random discrete event (CPT = Conditional Probability Table).

success = add_node(net, DSL_CPT, "Success")
somenames = IdArray()
add(somenames, "Sucess")
add(somenames, "Failure")
set_number_of_outcomes(definition(get_node(net, success)), somenames)

Here we create the node, obtained a node handle, and then proceed to give it two states. We can similary create a second node with three states.

forecast = add_node(net, DSL_CPT, "Forecast")
flush(somenames)
add(somenames, "Good")
add(somenames, "Moderate")
add(somenames, "Poor")
set_number_of_outcomes(definition(get_node(net, forecast)), somenames)

Notice that the syntax used closely follows what is defined in SMILE.

Next we add an arc from “Success” to “Forecast” to represent the conditional dependencies of the latter on the former:

add_arc(net, success, forecast)

Note that handles of the nodes are required to do this.

Next we fill in the probability distribution using the Smile.jl equivalent of the DSL_doubleArray.

theprobs = DoubleArray()
set_size(theprobs, 2)
set_at(theprobs, 0, 0.2)
set_at(theprobs, 1, 0.8)
set_definition(definition(get_node(net, success)), theprobs)

Specifying the 2x3 probability table for the second node is done as follows:

thecoordinates = SysCoordinates(definition(get_node(net, forecast)))
set_unchecked_value(thecoordinates, 0.4); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.4); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.2); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.1); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.3); next(thecoordinates)
set_unchecked_value(thecoordinates, 0.6);

Note that there was no checking. This is for speed reasons, and how the SMILE tutorial was written.

We end by writing the network to a file, either as a ”.dsl” or ”.xdsl”.

write_file(net, "mynet.xdsl")

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Smile.jl 1.0 documentation

Naive Bayes

This learning algorithm creates a Naive Bayes [https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_bs] graph structure in which a single class variable points to all other variables. The probability tables are filled out using Expectation Maximization.

[image: https://raw.githubusercontent.com/sisl/Smile.jl/master/doc/naive_bayes.png]

Parameters

classVariableId: the variable id corresponding to the class variable

LearnParams_NaiveBayes() = new("class")
LearnParams_NaiveBayes(var::String) = new(var)

Examples

net = Network()
learn!(net, dset, LearnParams_NaiveBayes())

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Smile.jl 1.0 documentation

Tree Augmented Naive Bayes

This learning algorithm creates a Tree Augmented Naive Bayes [https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_tan] (TAN) graph structure in which a single class variable have no parents and all other variables have the class as a parent and at most one other attribute as a parent.

The probability tables are filled out using Expectation Maximization.

[image: https://raw.githubusercontent.com/sisl/Smile.jl/master/doc/TAN.png]

Parameters

classvar: the variable id corresponding to the class variable, String

maxSearchTime: the maximum runtime for the algorithm, milliseconds, Cint

seed: the random seed to use, 0 for time-based random seed, Uint32

maxcache: the maximum cache size, Uint64

LearnParams_TreeAugmentedNaiveBayes() = new("class", 0, 0, 2048)
LearnParams_TreeAugmentedNaiveBayes(class) = new(class, 0, 0, 2048)

Examples

net = Network()
learn!(net, dset, LearnParams_TreeAugmentedNaiveBayes())

Algorithm

The TAN algorithm is [image: O(n^2 \text{log} n)], where n is the number of graph vertices:

	Compute the mutual information between each pair of attributes

	Build a complete undirected graph in which the vertices are the attributes n variables. The edges are weighted according to the pairwise mutual information

	Build a maximum weighted spanning tree

	Transform the resulting undirected graph to a directed graph by selecting the class variable as the root node and seeting the direction of all edges outward from it

	Construct a TAN model by adding an arc from the class variable to all other variables

Reference

The Decision Systems Laboratory recommends the following reference:

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine learning, 29(2), 131-163.

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Smile.jl 1.0 documentation

Bayesian Search

This learning algorithm uses the Bayesian Search [https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_bs] procedure. It is a general-purpose graph structure learning algorithm, meaning it will attempt to search the full space of graphs for the best graph.

The probability tables are filled out using Expectation Maximization.

The algorithm runs a partially directed graph search over Markov equivalence classes instead of directly searching the space of DAGs (which is superexponential in n).

[image: https://raw.githubusercontent.com/sisl/Smile.jl/master/doc/bayesiansearch.png]

Parameters

type LearnParams_BayesianSearch
 maxparents :: Int # limits the maximum number of parents a node can have
 maxsearchtime :: Int # maximum runtime of the algorithm [seconds?] (0 = infinite)
 niterations :: Int # number of searches (and indirectly number of random restarts)
 linkprobability :: Float64 # defines the probabilty of having an arc between two nodes
 priorlinkprobability :: Float64 # defines a prior existence of an arc between two nodes
 priorsamplesize :: Int # influences the "strength" of prior link probability.
 seed :: Int # random seed (0=none)
 forced_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forced to be in the network
 forbidden_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forbidden in the network
 tiers :: Vector{Tuple} # a list of (i->tier) associating nodes with a particular tier

 LearnParams_BayesianSearch() = new(5, 0, 20, 0.1, 0.001, 50, 0, Array(Tuple,0), Array(Tuple,0), Array(Tuple,0))
end

Examples

net = Network()
learn!(net, dset, LearnParams_BayesianSearch())

Algorithm

Bayesian Search is not a specific algorithm, but a class of algorithms. Thus, what exactly is going on under the hood in SMILE is not known. However, the following is true about partially directed graph search and surmised to be true about Bayesian Search.

A Markov Equivalence class is a graph candidate containing both directed and undirected edges. A directed acyclic graph G is a member of the Markov equivalence class encoded by a particually directed graph G’ iff G has the same edges as G’ without regard to direction and has the same v-structures as G’. It follows that the space of marov equivalence classes is smaller.

Two graphs are Markov equivalent if they encode the same set of conditional independent assumptions. A Markov Equivalence class is thus a set containing all directed acyclic graphs that are Markov equivalent to each other.

In structure search we would like to maximize the posterior probability of the structure given the data, [image: \arg\max_G P(G|D)]. An equivalent formulation seeks to maximize the Bayesian Score.

In general, two structures belonging to the same Markov equivalence class may be given different scores. However, specific priors, such as the BDeu prior, can be used to ensure score equivalence.

Greedy Hill Climbing

Searching over the space of graphs typically runs as follows:

	Start with a random intial graph

	Search for the next-best graph reachable by applying one of each of the following operations:

	Adding a new undirected or directed edge

	Removing an existing edge

	Reversing an existing directed edge

	Converting [image: A - B - C] to [image: A\rightarrow B \leftarrow C]

	Each candidate graph is scored. The Bayesian Score is defined only for directed acyclic graphs, so a member of the Markov equivalence graph must be generated from which the score is computed

	The graph with the highest score is selected, and the process is continued until a local maxima is reached

Reference

Kochenderfer, M. (2014). Decision Making under Uncertainty, 47-55.

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Smile.jl 1.0 documentation

Greedy Thick Thinning

This learning algorithm uses the Greedy Thick Thinning [https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_greedyThickThinning] procedure. It is a general-purpose graph structure learning algorithm, meaning it will attempt to search the full space of graphs for the best graph.

The probability tables are filled out using Expectation Maximization.

[image: https://raw.githubusercontent.com/sisl/Smile.jl/master/doc/bayesiansearch.png]

Parameters

type LearnParams_GreedyThickThinning
 maxparents :: Int # limits the maximum number of parents a node can have
 priors :: Int # either K2 or BDeu
 netWeight :: Float64 # for BDeu prior it defines the weight for the uniform prior
 forced_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forced to be in the network
 forbidden_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forbidden in the network
 tiers :: Vector{Tuple} # a list of (i->tier) associating nodes with a particular tier
 LearnParams_GreedyThickThinning() = new(5, DSL_K2, 1.0, Tuple[], Tuple[], Tuple[])
end

Examples

net = Network()
learn!(net, dset, LearnParams_GreedyThickThinning())

Algorithm

The Greedy Thick Thinning algorithm starts with an empty graph and repeatedly adds the next arc which maximizes the Bayesian Score metric until a local maxima is reached. It then removes arcs untils a local maxima is reached.

The algorithm is thus fairly efficient at the expense of being prone to being trapped in local maxima.

Two priors can be used. The BDeu prior ensures equal scoring across Markov equivalance classes. The K2 prior is constant across all variables and is typically used for maximizing [image: P(G\mid D)] when searching the space of graphs directly.

Reference

Hesar, A. and Tabatabaee, H. and Jalali, M. (2012). Structure Learning of Bayesian Networks Using Heuristic Methods.

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Smile.jl 1.0 documentation

PC

This learning algorithm uses the PC [https://dslpitt.org/genie/wiki/Reference_Manual:_DSL_pc] procedure. It is a general-purpose graph structure learning algorithm, meaning it will attempt to search the full space of graphs for the best graph.

The probability tables are filled out using Expectation Maximization.

[image: https://raw.githubusercontent.com/sisl/Smile.jl/master/doc/bayesiansearch.png]

Parameters

type LearnParams_PC
 maxcache :: Uint64 # the maximum algorithm cache size
 maxAdjacency :: Cint # thought to be the max number of parents
 maxSearchTime :: Cint # the maximum runtime of the algorithm, ms
 significance :: Float64 # the significance level used in independence tests
 forced_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forced to be in the network
 forbidden_arcs :: Vector{Tuple} # a list of (i->j) arcs which are forbidden in the network
 tiers :: Vector{Tuple} # a list of (i->tier) associating nodes with a particular tier

 LearnParams_PC() = new(2048, 8, 0, 0.05, Tuple[], Tuple[], Tuple[])
end

Examples

net = Network()
learn!(net, dset, LearnParams_PC())

Algorithm

	Start with a complete undirected graph on all n variables, with edges between all nodes

	For each pair of variables X and Y, and each set of other variables S, see if X and Y are conditionally indepdendent given S. If so, remove the edge between X and Y

	Find colliders by checking for conditional dependence; orient the edges of colliders

	Try to orient undirected edges by consistency with already-oriented edges; do this recursively until no more edges can be oriented

Reference

Spirtes, P. and Glymour, C. and Scheines, R. (2001). Causation, Prediction, and Search.

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Smile.jl 1.0 documentation

Index

 Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_images/math/b3b09c1b04dcf0afd1bfc94cfbbeed39b7421f7e.png

_images/math/380ee1b9062ff7a27316f4e89279b29375016f24.png
O(n*logn)

_images/math/6e42ab744e6153e35503a51996c33764cc250d2a.png
arg maxqg P(G|D)

_images/math/783d713c24657bc620bb483da9328a3361f23adf.png
A— b «C

_images/math/4f405883d038574f4a0a693858242662aafc1ba8.png
P(G | D)

_static/minus.png

search.html

 Navigation

 		
 index

 		Smile.jl 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Tim Wheeler.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

